RESEARCH & INNOVATION GOING FORWARD
01.03.24 Research

Parkinson’s is the Disease. He Could Be the Cure.

UGA Researcher Dr. Anumantha Kanthasamy Receives Millions in Federal Grant.

For centuries, scientists have tried to crack the mystery of a devastating ailment once called “the shaking palsy.” But Parkinson’s disease, which causes tremors, muscle stiffness and difficulty walking, remains the second most common neurodegenerative disorder in the United States after Alzheimer’s. About 1 million Americans have Parkinson’s, and more than 50,000 new cases are diagnosed annually.

Drugs available to treat Parkinson’s can control symptoms but not slow progression. By the time its symptoms are evident, the disease already cut a swath of dead neurons through a crucial part of the brain.

We need to detect Parkinson’s disease much sooner, which means we need to identify its diagnostic markers

Kanthasamy, who’s appointed in the College of Veterinary Medicine

These side effects occur not because of Parkinson’s disease but because the most effective treatment is not delivered to the brain continuously

University of Georgia Professor Anumantha Kanthasamy has a plan to fight back.

In 2021, Kanthasamy was appointed as UGA’s inaugural John H. “Johnny” Isakson Chair and Georgia Research Alliance Eminent Scholar in Parkinson’s Research. He is leading a new UGA initiative in brain science, including a state-of-the-art Center for Neurological Disease Research. He also spearheads an effort to recruit interdisciplinary researchers in neuroscience, epigenetics, bioinformatics and translational medicine. Four new faculty hires will start in Fall 2023.

“We need to detect Parkinson’s disease much sooner, which means we need to identify its diagnostic markers,” said Kanthasamy, who’s appointed in the College of Veterinary Medicine. “We also need new therapeutics to stop Parkinson’s from progressing. To do that, we must understand more about the disease’s underlying mechanisms.”

The immediate driver of Parkinson’s is dying nerve cells in a part of the brain known as “substantia nigra” (black substance), where neuromelanin-rich neurons produce the neurotransmitter dopamine that helps control movement. If these cells die, the brain’s dopamine supply falls, and eventually Parkinson’s symptoms become apparent.

For 60 years, the gold-standard treatment for Parkinson’s has been the drug levodopa (L-DOPA). A patient typically takes L-DOPA tablets three or four times a day, lifting dopamine levels in the brain. But the drug’s half-life is brief, and as it wears off between doses the benefit fades quickly, especially as the disease progresses. After about five years of sustained use, many patients develop distressing side effects—uncontrolled arm and head movements, for example.

We look at it more as a disease that can be initiated or spread from the brain to the body’s ‘periphery,’ but also as a disease that could be started from the periphery and then spread to the brain,

Jae-Kyung (Jamise) Lee, associate professor in the Department of Physiology and Pharmacology.

Over the past decade, researchers have increasingly found evidence that neurodegenerative disorders can be triggered or accelerated by a sick gut. A healthy gut helps modulate immune responses. When it becomes chronically unbalanced—or “dysbiotic”—it can drive harmful inflammation that affects the brain.

“There has been an explosion of research and information about what goes wrong in the gut microbiome and how it impacts the brain,” Kanthasamy said. “But our work is different.”

He is leading a research team to understand a gut-microbe-brain communications channel, though with a new therapeutic twist. The gut microbiome includes trillions of bacteria, fungi and viruses, some of which are sending messages to the brain. The UGA team has gene-edited a probiotic to prompt the manufacture of a therapeutic by the patient’s body itself.